Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pulm Med ; 2021: 5488591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239729

RESUMO

The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2 + homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.


Assuntos
Pneumopatias , Proteínas S100 , Biomarcadores/análise , Biomarcadores/metabolismo , Cálcio/metabolismo , Desenvolvimento de Medicamentos , Homeostase , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/imunologia , Pneumopatias/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas S100/imunologia , Proteínas S100/metabolismo
2.
Sci Rep ; 10(1): 16350, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005006

RESUMO

Chronic rhinosinusitis (CRS) is a common condition associated with inflammation and tissue remodeling of the nose and paranasal sinuses, frequently occurring with nasal polyps and allergies. Here we investigate inflammation and the protease profile in nasal tissues and plasma from control non-CRS patients and CRS patients. Gene expression for several cytokines, proteases, and antiproteases was quantified in nasal tissue from non-CRS and CRS subjects with nasal polyps. Elevated expression of S100A9, IL1A, MMP3, MMP7, MMP11, MMP25, MMP28, and CTSK was observed in tissue from CRS subjects with nasal polyps compared to control tissue. Tissue protein analysis confirmed elevated levels of these targets compared to controls, and increased MMP3 and MMP7 observed in CRS subjects with nasal polyps compared to CRS subjects without polyps. Plasma concentrations of MMP3 and MMP7 were elevated in the CRS groups compared to controls. The nasal cell line, CCL-30, was exposed to S100A9 protein, resulting in increased MMP3, MMP7, and CTSK gene expression and elevated proliferation. Silencing MMP3 significantly reduced S100A9-mediated cell proliferation. Therefore, the elevated expression of S100A9 and MMPs are observed in CRS nasal tissue and S100A9 stimulated MMP3 responses to contribute to elevated nasal cell proliferation.


Assuntos
Calgranulina B/metabolismo , Metaloproteinases da Matriz/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Adulto , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L1021-L1035, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964723

RESUMO

S100 calcium-binding protein A9 (S100A9) is elevated in plasma and bronchoalveolar lavage fluid (BALF) of patients with chronic obstructive pulmonary disease (COPD), and aging enhances S100A9 expression in several tissues. Currently, the direct impact of S100A9-mediated signaling on lung function and within the aging lung is unknown. Here, we observed that elevated S100A9 levels in human BALF correlated with age. Elevated lung levels of S100A9 were higher in older mice compared with in young animals and coincided with pulmonary function changes. Both acute and chronic exposure to cigarette smoke enhanced S100A9 levels in age-matched mice. To examine the direct role of S100A9 on the development of COPD, S100a9-/- mice or mice administered paquinimod were exposed to chronic cigarette smoke. S100A9 depletion and inhibition attenuated the loss of lung function, pressure-volume loops, airway inflammation, lung compliance, and forced expiratory volume in 0.05 s/forced vital capacity, compared with age-matched wild-type or vehicle-administered animals. Loss of S100a9 signaling reduced cigarette smoke-induced airspace enlargement, alveolar remodeling, lung destruction, ERK and c-RAF phosphorylation, matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and keratinocyte-derived chemokine (KC) release into the airways. Paquinimod administered to nonsmoked, aged animals reduced age-associated loss of lung function. Since fibroblasts play a major role in the production and maintenance of extracellular matrix in emphysema, primary lung fibroblasts were treated with the ERK inhibitor LY3214996 or the c-RAF inhibitor GW5074, resulting in less S100A9-induced MMP-3, MMP-9, MCP-1, IL-6, and IL-8. Silencing Toll-like receptor 4 (TLR4), receptor for advanced glycation endproducts (RAGE), or extracellular matrix metalloproteinase inducer (EMMPRIN) prevented S100A9-induced phosphorylation of ERK and c-RAF. Our data suggest that S100A9 signaling contributes to the progression of smoke-induced and age-related COPD.


Assuntos
Calgranulina B/metabolismo , Mediadores da Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumaça/efeitos adversos , Animais , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Capacidade Vital/fisiologia
4.
Am J Respir Cell Mol Biol ; 62(3): 342-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31517509

RESUMO

Sphingomyelin synthase is responsible for the production of sphingomyelin (SGM), the second most abundant phospholipid in mammalian plasma, from ceramide, a major sphingolipid. Knowledge of the effects of cigarette smoke on SGM production is limited. In the present study, we examined the effect of chronic cigarette smoke on sphingomyelin synthase (SGMS) activity and evaluated how the deficiency of Sgms2, one of the two isoforms of mammalian SGMS, impacts pulmonary function. Sgms2-knockout and wild-type control mice were exposed to cigarette smoke for 6 months, and pulmonary function testing was performed. SGMS2-dependent signaling was investigated in these mice and in human monocyte-derived macrophages of nonsmokers and human bronchial epithelial (HBE) cells isolated from healthy nonsmokers and subjects with chronic obstructive pulmonary disease (COPD). Chronic cigarette smoke reduces SGMS activity and Sgms2 gene expression in mouse lungs. Sgms2-deficient mice exhibited enhanced airway and tissue resistance after chronic cigarette smoke exposure, but had similar degrees of emphysema, compared with smoke-exposed wild-type mice. Sgms2-/- mice had greater AKT phosphorylation, peribronchial collagen deposition, and protease activity in their lungs after smoke inhalation. Similarly, we identified reduced SGMS2 expression and enhanced phosphorylation of AKT and protease production in HBE cells isolated from subjects with COPD. Selective inhibition of AKT activity or overexpression of SGMS2 reduced the production of several matrix metalloproteinases in HBE cells and monocyte-derived macrophages. Our study demonstrates that smoke-regulated Sgms2 gene expression influences key COPD features in mice, including airway resistance, AKT signaling, and protease production.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Animais , Brônquios/citologia , Células Cultivadas , Ceramidas/metabolismo , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Metaloproteinases da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Esfingomielinas/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia
5.
Am J Respir Cell Mol Biol ; 62(5): 598-607, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31801023

RESUMO

Enhanced expression of the cellular antioxidant glutathione peroxidase (GPX)-1 prevents cigarette smoke-induced lung inflammation and tissue destruction. Subjects with chronic obstructive pulmonary disease (COPD), however, have decreased airway GPX-1 levels, rendering them more susceptible to disease onset and progression. The mechanisms that downregulate GPX-1 in the airway epithelium in COPD remain unknown. To ascertain these factors, analyses were conducted using human airway epithelial cells isolated from healthy subjects and human subjects with COPD and lung tissue from control and cigarette smoke-exposed A/J mice. Tyrosine phosphorylation modifies GPX-1 expression and cigarette smoke activates the tyrosine kinase c-Src. Therefore, studies were conducted to evaluate the role of c-Src on GPX-1 levels in COPD. These studies identified accelerated GPX-1 mRNA decay in COPD airway epithelial cells. Targeting the tyrosine kinase c-Src with siRNA inhibited GPX-1 mRNA degradation and restored GPX-1 protein levels in human airway epithelial cells. In contrast, silencing the tyrosine kinase c-Abl, or the transcriptional activator Nrf2, had no effect on GPX-1 mRNA stability. The chemical inhibitors for c-Src (saracatinib and dasanitib) restored GPX-1 mRNA levels and GPX-1 activity in COPD airway cells in vitro. Similarly, saracatinib prevented the loss of lung Gpx-1 expression in response to chronic smoke exposure in vivo. Thus, this study establishes that the decreased GPX-1 expression that occurs in COPD lungs is at least partially due to accelerated mRNA decay. Furthermore, these findings show that targeting c-Src represents a potential therapeutic approach to augment GPX-1 responses and counter smoke-induced lung disease.


Assuntos
Células Epiteliais/metabolismo , Glutationa Peroxidase/genética , Pulmão/patologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Estabilidade de RNA/genética , Animais , Benzodioxóis/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Camundongos , Quinazolinas/farmacologia , Fumar/efeitos adversos , Glutationa Peroxidase GPX1
6.
Int J Chron Obstruct Pulmon Dis ; 14: 1305-1315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417248

RESUMO

Background: Viral infections are considered a major driving factor of chronic obstructive pulmonary disease (COPD) exacerbations and thus contribute to disease morbidity and mortality. Respiratory syncytial virus (RSV) is a frequently detected pathogen in the respiratory tract of COPD patients during an exacerbation. We previously demonstrated in a murine model that leukemia inhibitory factor (LIF) expression was increased in the lungs during RSV infection. Subduing LIF signaling in this model enhanced lung injury and airway hypersensitivity. In this study, we investigated lung LIF levels in COPD patient samples to determine the impact of disease status and cigarette smoke exposure on LIF expression. Materials and methods: Bronchoalveolar lavage fluid (BALF) was obtained from healthy never smokers, smokers, and COPD patients, by written informed consent. Human bronchial epithelial (HBE) cells were isolated from healthy never smokers and COPD patients, grown at the air-liquid interface and infected with RSV or stimulated with polyinosinic:polycytidylic acid (poly (i:c)). Mice were exposed to cigarette smoke daily for 6 months and were subsequently infected with RSV. LIF expression was profiled in all samples. Results: In human BALF, LIF protein was significantly reduced in both smokers and COPD patients compared to healthy never smokers. HBE cells isolated from COPD patients produced less LIF compared to never smokers during RSV infection or poly (i:c) stimulation. Animals exposed to cigarette smoke had reduced lung levels of LIF and its corresponding receptor, LIFR. Smoke-exposed animals had reduced LIF expression during RSV infection. Two possible factors for reduced LIF levels were increased LIF mRNA instability in COPD epithelia and proteolytic degradation of LIF protein by serine proteases. Conclusions: Cigarette smoke is an important modulator for LIF expression in the lungs. Loss of LIF expression in COPD could contribute to a higher degree of lung injury during virus-associated exacerbations.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Fumar Cigarros , Fator Inibidor de Leucemia/análise , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica , Mucosa Respiratória , Infecções por Vírus Respiratório Sincicial , Fumaça/efeitos adversos , Animais , Células Cultivadas/imunologia , Fumar Cigarros/imunologia , Fumar Cigarros/patologia , Modelos Animais de Doenças , Humanos , Exposição por Inalação , Camundongos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Exacerbação dos Sintomas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA